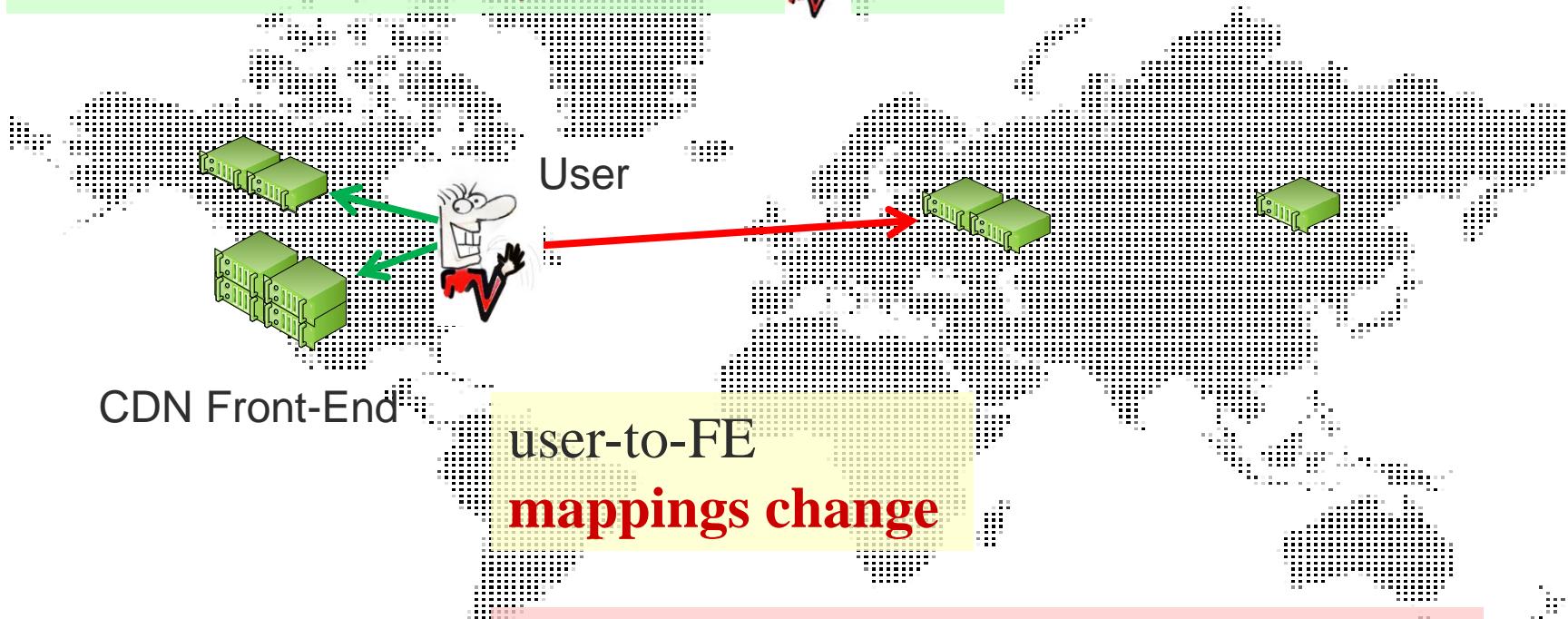
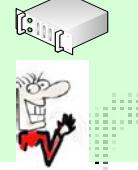


# Assessing Affinity Between Users and CDN Sites

Xun Fan<sup>1,2</sup>, Ethan Katz-Bassett<sup>2</sup>, **John Heidemann**<sup>1,2</sup>

*University of Southern California  
1: Information Sciences Institute; 2: Computer Science Dept.*

2015-04-24



Copyright © 2015 by John Heidemann  
Release terms: CC-BY-NC 4.0 international



*This research is sponsored by the Department of Homeland Security (DHS) Science and Technology Directorate, HSARPA, Cyber Security Division, BAA 11-01-RIKA and Air Force Research Laboratory, Information Directorate under agreement number FA8750-12-2-0344, and contract number D08PC75599. The U.S. Gov't is authorized to reproduce and distribute reprints for Gov't purposes notwithstanding any copyright notation thereon. The views herein are those of the authors and do not necessarily represent those of DHS or the U.S. Gov't.*

# Content Delivery Networks (CDNs)

deploy many **front-ends** (FEs)  
to **reduce latency to users**



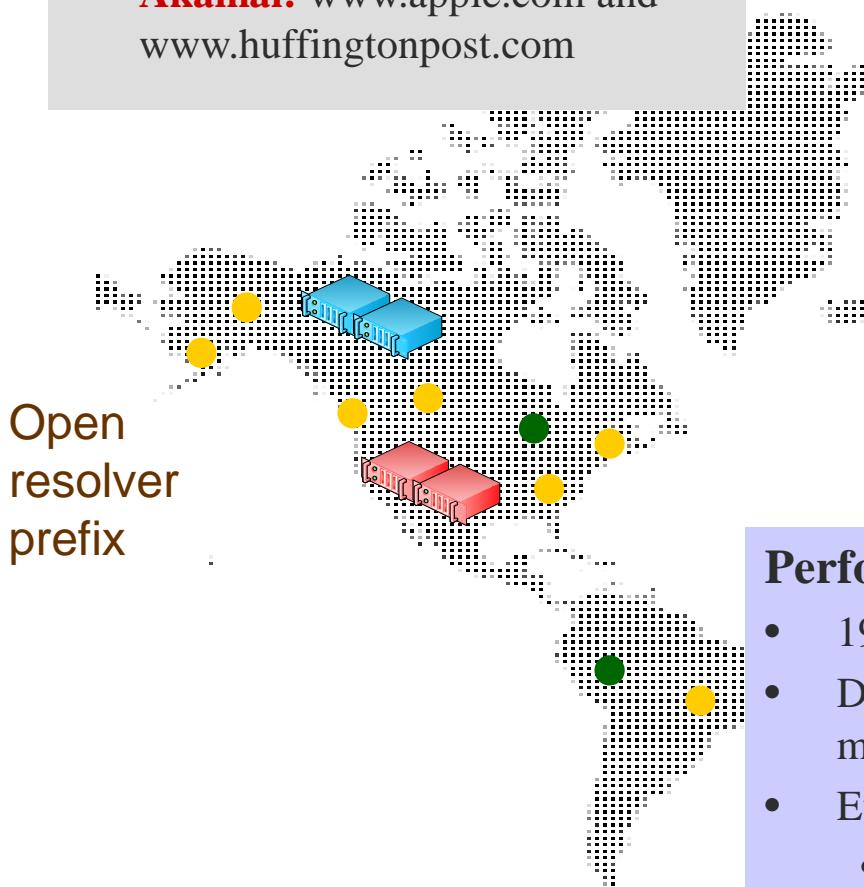
**do mapping changes matter?**  
to performance? security?  
how often? how much?

# When Does User-to-FE Mapping Matter?

- for users
  - performance effects?
  - where does my data go? (legally)
- for governments
  - does data go abroad? (national policy)
- for CDN operators
  - how do other CDNs work?

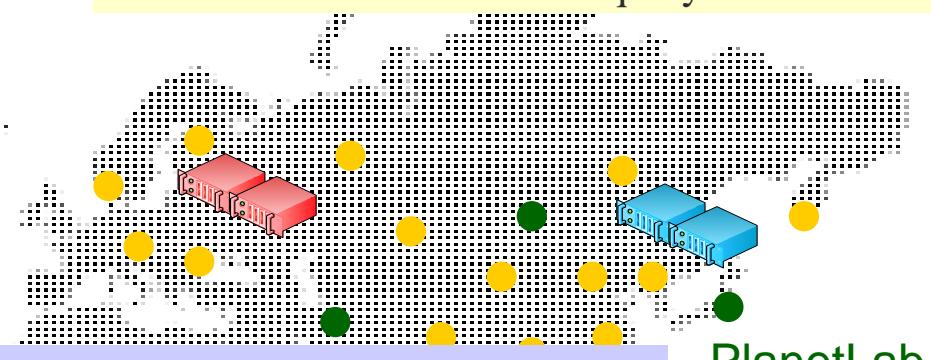
# Contributions

- evaluating user-to-FE maps from **many places**
- **performance effects** of user/FE map changes
- evaluation of **geographic footprint** users see


# Contributions

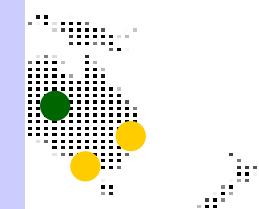
- evaluating user-to-FE maps from **many places**
  - 32k user prefixes (/24), 180 countries, 5158 ASes
- **performance effects** of user/FE map changes
  - sometimes large latency!
- evaluation of **geographic footprint** users see
  - many prefixes see several countries per month

# Data Collection


targets: **two large CDNs**

- **Google:** www.google.com
- **Akamai:** www.apple.com and www.huffingtonpost.com




**Broad probing:** study **mapping changes**

- 32k open resolver prefixes
- Every 15 minutes for 4 weeks
- Google: DNS EDNS-client-subnet query
- Akamai: DNS recursive query



**Performance probing:** study **latency**

- 192 PlanetLab nodes
- DNS queries and latency measurements
- Every DNS TTL for 1 week
  - Google: 5 minutes
  - Akamai: 20 sec



# Reuse Existing Clustering and Geolocation

- Clustering: RTT-based fingerprinting
  - group FE IP addresses into *FE Clusters*
  - FE Cluster := *one* physical and network location
- Geolocation: Client-Centric-Geolocation
  - find each FE cluster's latitude and longitude
  - uses client locations
- from [Caldar et al, ACM IMC 2013] (our prior work)

# Identifying Mapping Changes

*Observations (every 15 min)*

| user prefix | 10:00             | 10:15 | 10:30 | 10:45 |
|-------------|-------------------|-------|-------|-------|
| 1.2.3.0/24  | 1 (FE Cluster ID) | 1     | 1     | 1     |
| 1.2.4.0/24  | 2                 | 2     | 3     | 3     |

find **mapping changes**

and their **switching pairs** (or **switches**):  
clusters before and after change  
(here: 2 and 3)

# Performance: Latency

- estimate client performance with latency
  - RTT (ping latency)
  - patch fetch time
- only from 192 PlanetLab nodes (needs app support)
- after **mapping change**, check **current *and* prior** cluster

| user prefix | 10:00 | 10:15 | 10:30          | 10:45 |
|-------------|-------|-------|----------------|-------|
| 1.2.4.0/24  | 2     | 2     | 3              | 3     |
| target      | 2     | 2     | <b>3 and 2</b> | 3     |
| RTT         | 20ms  | 22    | 62 (and 22)    | 60    |
| page fetch  | 50ms  | 54    | 135 (and 58)   | 132   |

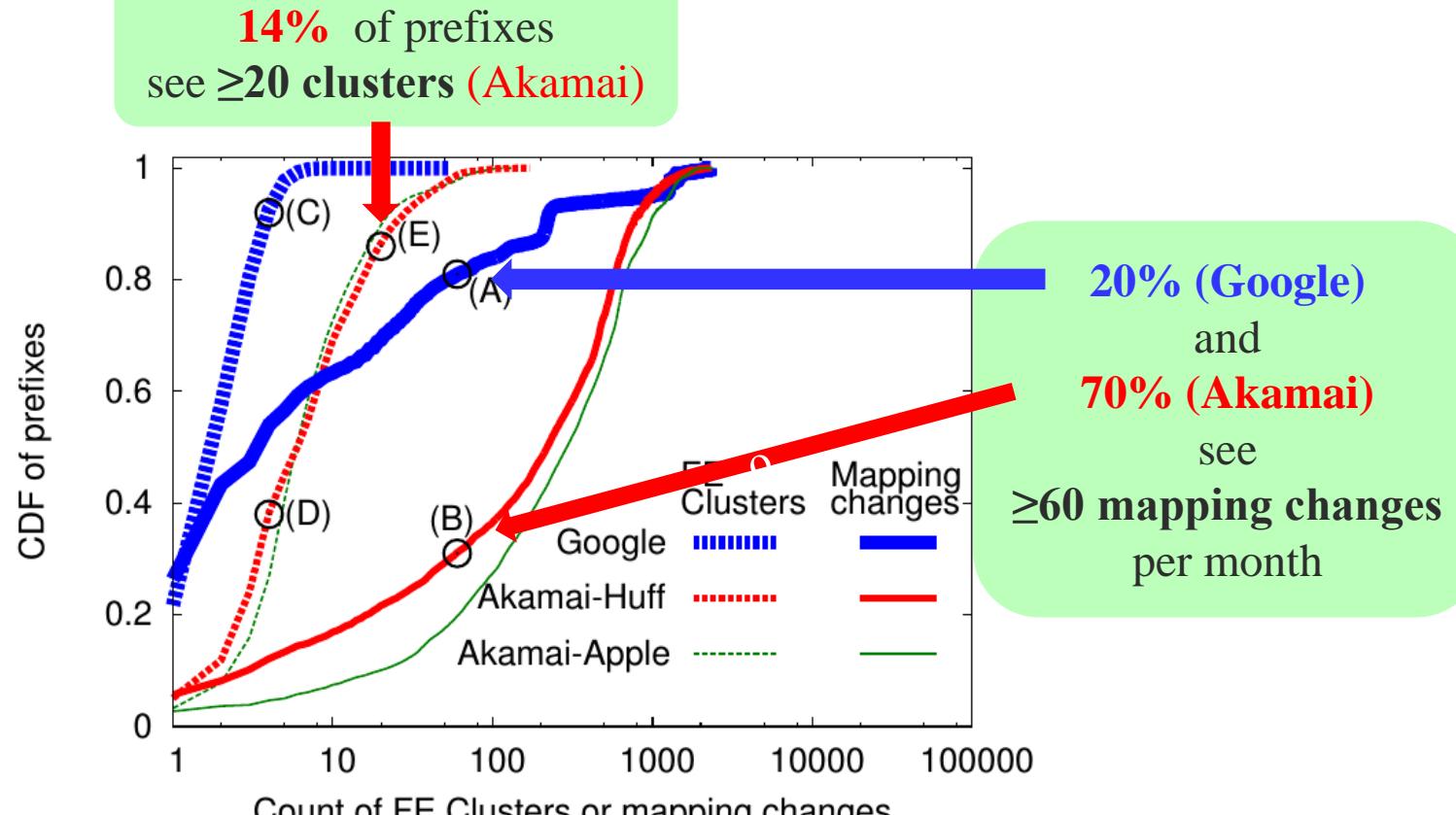
# Is Our Evaluation Complete?

|                             | <b>Google</b> | <b>Akamai<br/>-Huff</b> |
|-----------------------------|---------------|-------------------------|
| Total IPs                   | 24,150 100%   | 9,492 100%              |
| Clustered                   | 22,679 94%    | 8,843 93%               |
| Un-clustered                | 1,471 6%      | 649 7%                  |
| Geolocated                  | 22,101 92%    | 7,953 84%               |
| Un-geolocated               | 2,049 8%      | 1,593 16%               |
| Clustered and<br>Geolocated | 20,861 86%    | 7,953 84%               |
| Total FE Clusters           | 983/1100      | 1,195/1200              |

**cover most clusters**      **~70%**      **~100%**

we see only  
some servers,  
but *many clusters*

estimates of complete from: [Caldar et al] and [Zhao et al], both ACM IMC '13


# Results

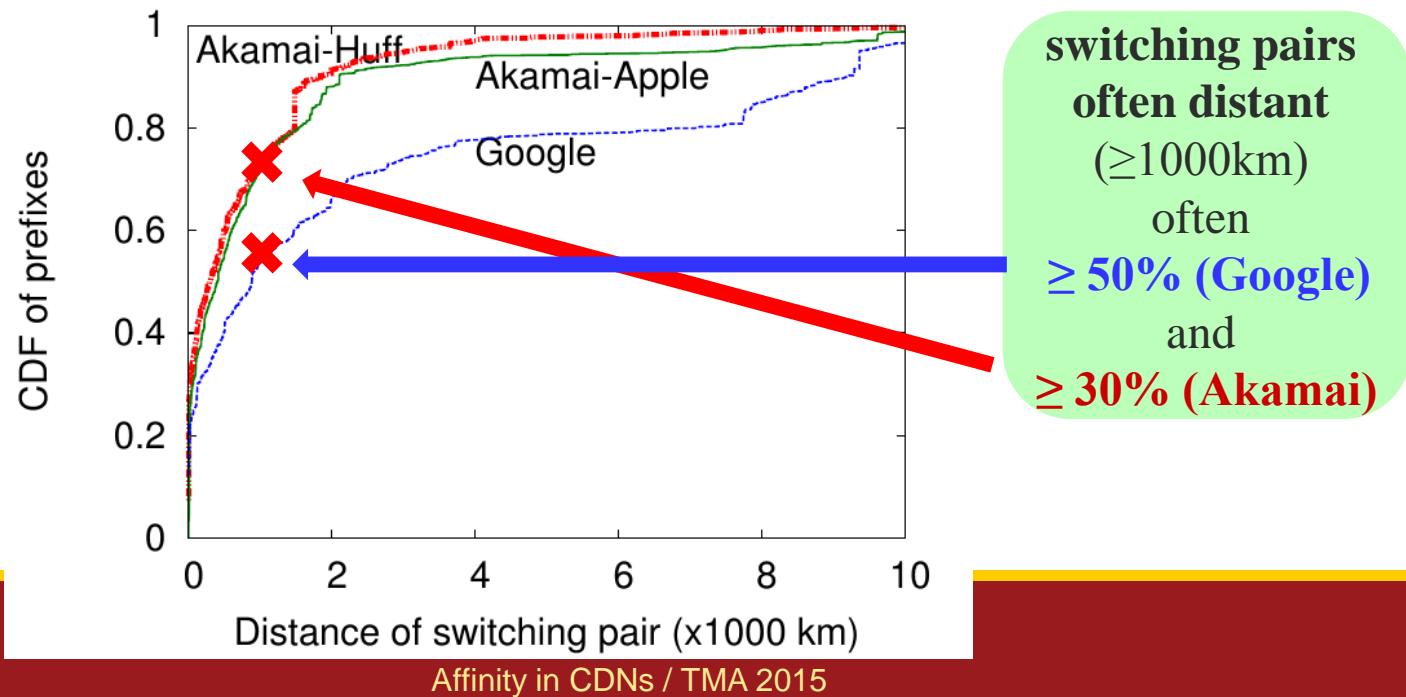
- Are there many mapping changes?
  - Mapping changes are common
- Do mapping changes affect user performance?
  - Many prefixes see distant switching pairs
  - Distant switching pairs are not rare
  - Distant switching pairs are more likely to cause large latency changes
  - A few prefixes stay on large latency FE Clusters for long
- Are users mapped abroad?
  - Many prefixes are mapped to FEC in different countries/regions
  - Geographic footprint of user prefixes

# Results

- Are there many mapping changes?
  - **Mapping changes are common**
- Do mapping changes affect user performance?
  - Many prefixes see distant switching pairs
  - Distant switching pairs are not rare
  - Distant switching pairs are more likely to cause large latency changes
  - A few prefixes stay on large latency FE Clusters for long
- Are users mapped abroad?
  - Many prefixes are mapped to FEC in different countries/regions
  - Geographic footprint of user prefixes

# Are There Many Mapping Changes?



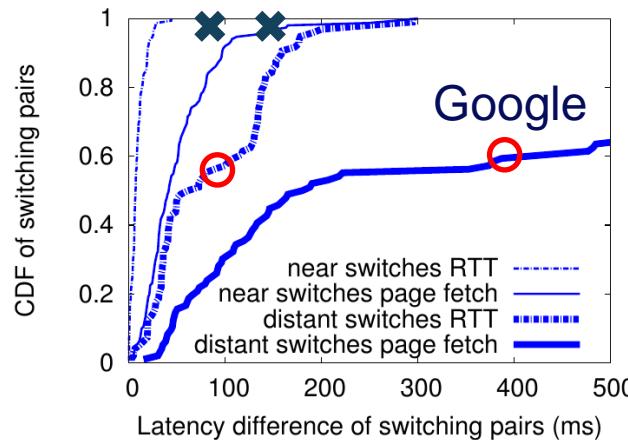

Mapping changes are common!

# Results

- Are there many mapping changes?
  - Mapping changes are common
- **Do mapping changes affect user performance?**
  - **Many prefixes see distant switching pairs**
  - Distant switching pairs are not rare
  - Distant switching pairs are more likely to cause large latency changes
  - A few prefixes stay on large latency FE Clusters for long
- Are users mapped abroad?
  - Many prefixes are mapped to FEC in different countries/regions
  - Geographic footprint of user prefixes

# Switching Pairs are Often Distant

- why do we care distant switching pairs?
  - move users between very different FEs
  - one side is likely higher latency
- metric: distance of first switching pairs after random time

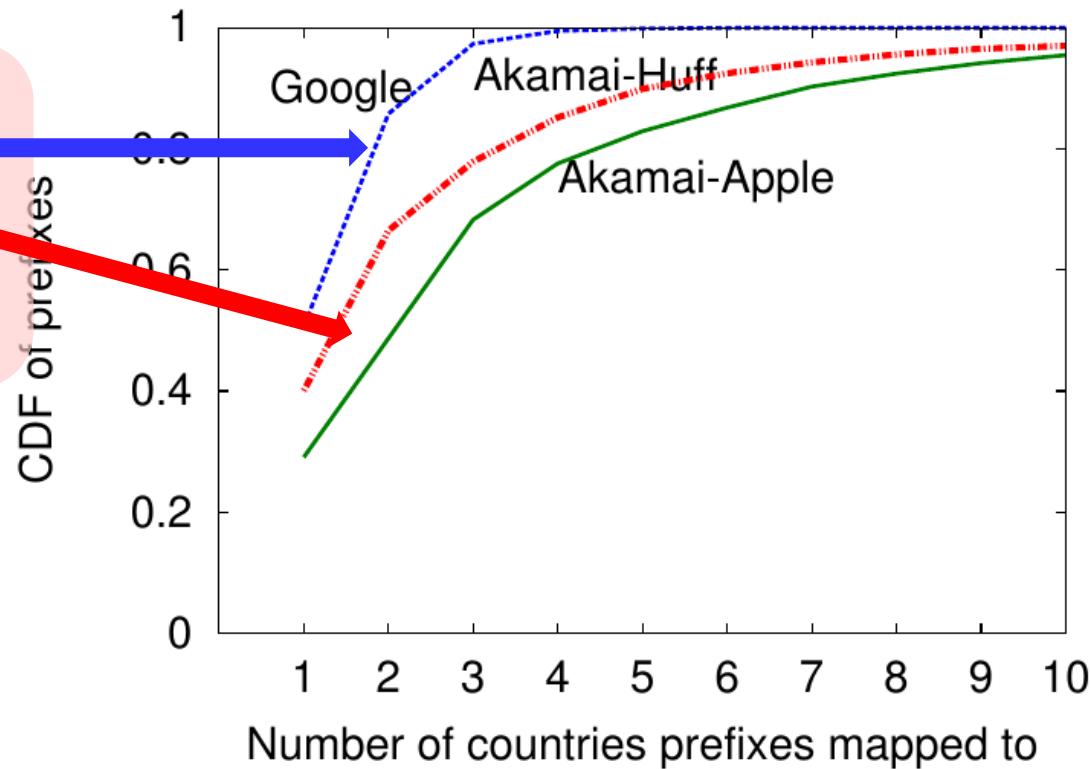



# Results

- Are there many mapping changes?
  - Mapping changes are common
- **Do mapping changes affect user performance?**
  - Many prefixes see distant switching pairs
  - Distant switching pairs are not rare
  - **Distant switching pairs are more likely to cause large latency changes**
  - A few prefixes stay on large latency FE Clusters for long
- Are users mapped abroad?
  - Many prefixes are mapped to FEC in different countries/regions
  - Geographic footprint of user prefixes

# Distant Switches => Large Latency Changes

- **X: near switches** (<1000km)  
generally (at least 90-98% of time Google and **Akamai**)  
see smaller performance changes (<50ms RTT, <150ms page fetch)
- **O: distant switches** (>1000km)  
sometimes (>40% Google, >28% Akamai)  
see large performance changes (>100ms RTT, >400ms page fetch)




# Results

- Are there many mapping changes?
  - Mapping changes are common
- Do mapping changes affect user performance?
  - Many prefixes see distant switching pairs
  - Distant switching pairs are not rare
  - Distant switching pairs are more likely to cause large latency changes
  - A few prefixes stay on large latency FE Clusters for long
- **Are users mapped abroad?**
  - **Many prefixes are mapped to FEC in different countries/regions**
  - **Geographic footprint of user prefixes**

# Many Prefixes Go Abroad

many prefixes  
20% (Google)  
or 40-60% (Akamai)  
leave their  
originating country



# Geographic Footprint May Matter to Some

- metric: how often does a prefix go abroad and where does it go?

| source<br>country                                                | %   | Google<br>non-domestic |          |          | Akamai-Huff<br>non-domestic |          |          |
|------------------------------------------------------------------|-----|------------------------|----------|----------|-----------------------------|----------|----------|
|                                                                  |     | 1st                    | 2nd      | 3rd      | 1st                         | 2nd      | 3rd      |
| us (United States)                                               | 11% | be (4%)                | nl (4%)  | de (3%)  | 98%                         | ca (38%) | gb (27%) |
| kr (S. Korea)                                                    | 97% | jp (58%)               | us (19%) | cn (18%) | 99%                         | tw (99%) | jp (6%)  |
| ru (Russia)                                                      | 99% | us (35%)               | be (6%)  | nl (5%)  | 96%                         | se (74%) | no (43%) |
| jp (Japan)                                                       | 55% | us (30%)               | nl (9%)  | be (7%)  | 100%                        | cn (92%) | us (67%) |
| br (Brazil)                                                      | 48% | nl (18%)               | be (17%) | us (14%) | 83%                         | us (78%) | cl (53%) |
| tw (Taiwan)                                                      | 45% | us (24%)               | be (9%)  | nl (9%)  | 99%                         | cn (74%) | us (72%) |
| Brazil considered<br>requiring domestic<br>hosting (none today!) | %   | us (27%)               | nl (11%) | be (11%) | 99%                         | jp (93%) | gb (67%) |
|                                                                  | %   | us (40%)               | de (19%) | fr (5%)  |                             |          |          |
|                                                                  | %   | us (40%)               | nl (19%) | be (8%)  |                             |          |          |
|                                                                  | %   | us (24%)               | nl (18%) | be (11%) |                             |          |          |
| hk (Hong Kong)                                                   | —   | —                      | —        | —        | 91%                         | it (82%) | se (40%) |
| tr (Turkey)                                                      | —   | —                      | —        | —        | 91%                         | it (82%) | ae (23%) |
| fr (France)                                                      | —   | —                      | —        | —        | 99%                         | pl (69%) | gb (57%) |
|                                                                  |     |                        |          |          |                             |          | es (56%) |

Brazil considered  
requiring domestic  
hosting (none today!)

some see service from  
countries with strong domestic  
content restrictions

# Conclusions

- first to evaluate user-to-FE mapping changes from many VPs
- where you go can matter:
  - longer distance => higher latency
  - going abroad => what is your policy?
- Our data is free upon request:  
[http://www.isi.edu/ant/traces/mapping\\_cdns](http://www.isi.edu/ant/traces/mapping_cdns)